溪谷体育网

您现在的位置是: 首页 > 球队新闻

文章内容

农田径流量计算_田间净流量和净流量关系

tamoadmin 2024-05-28
1.农业污水的来源概括2.径流分为什么阶段?3.地下水天然资源量计算4.排渍模数名词解释主要措施是,灌溉,灌溉分为漫灌、喷灌、微喷灌、滴灌、渗灌。(这些分法是通

1.农业污水的来源概括

2.径流分为什么阶段?

3.地下水天然资源量计算

4.排渍模数名词解释

农田径流量计算_田间净流量和净流量关系

主要措施是,灌溉,灌溉分为漫灌、喷灌、微喷灌、滴灌、渗灌。(这些分法是通过出水量调节的,目的在于满足不同植物对水分的需求)

其他措施:

1、通过覆盖的方式,比如温室大棚,地膜,还有有的农民也会采用草垫子、秸秆等。目的在于防止水分蒸发。如果想要减少水分的话,就揭开覆盖物就可以了。(这种方法还可以防冻,通常在较冷的天气使用)

2、通过改变土壤结构来调节水分。减少使用化学肥料,防止土地板结、盐碱化,也可以减少水分散失。增加土壤的黏性,就是增加黏土含量可以减少水分流失,反之增加沙土含量减少粘土含量可以促进水分的散失,保持土壤的干燥。

农业污水的来源概括

地下水的补给、径流和排泄是地下水循环的三个基本环节,也是地下水水量和水质形成最重要的控制因素,也一直是水文地质学家关注的基础理论。

一、地下水的补给和排泄方式与影响因素

(一)地下水补给和排泄的方式

地下水的补给和排泄是指地下水和外界水体发生水量交换作用的正向(收入)和反向(支出)行为。例如,对于大气水,它既可以降水或凝结水形式通过包气带补给地下水;当地下水埋藏深度不大时,它又可以通过蒸发排泄到大气中。对于地表水,在一些地区(如干旱地区的冲、洪积扇的顶部,某些岩溶区)河水常常渗漏补给地下水;而在另一些地区(河流作为当地侵蚀基准面并切割含水层时)地下水又大量向河流排泄。泉水则是地下水集中排泄到地表的一种特殊形式。

对于不同的含水层之间,在水平方向上,下游分布的含水层可以得到上游含水层中的地下水径流的补给,但对上游含水层来说,则为径流排泄。在垂向剖面上不同深度的含水层之间,当各含水层的水头压力不同时,则水头压力较大的含水层中的地下水将通过其间的弱渗透岩层或某种渗流通道补给水头压力较小的含水层,而对水头压力较大的补给含水层来说一般称之为越流排泄,对获得补给的含水层来说称之为越流补给。

人为活动对于地下水既可有补给作用,也有排泄作用。例如,地下水可通过人工修建的水渠、水库、农田灌区以及专门的地下水人工回灌工程而获得补给;另一方面随着人类社会大规模的开发利用地下水,在许多地区,人为的开采已成为区域地下水排泄的主要方式。

就地球大陆上的地下水而言,大气降水的入渗补给最为普遍,对水资源量的形成最为重要;河水的渗漏,只发生在局部的地段,但是它对干旱、半干旱地区地下水资源量的形成有极大的作用;地下水的径流补给和越流补给,实际是含水层之间或含水层内部水量交换一种方式。因为这两种补给并没增加某一地下水流系统总的补给量。但在开采条件下,这两种补给量可能对取水工程的产水量有很大的意义。关于凝结水的补给,只发生在昼夜温差较大的沙漠、高山地区。

地下水的排泄方式,则视含水层的类型和埋藏条件而异。从全球大陆整个地下水圈来看,潜水的蒸发、地下水向河流的宣泄(包括泉排泄)以及数量越来越大的人工开采,无疑是三种最主要的排泄方式。潜水的蒸发主要发生在地下水埋深不大的平原区;河流排泄主要发生在丘陵山区;而人工开采量最大的则是平原区的孔隙地下水和岩溶水。

(二)地下水补给和排泄的影响因素

通过水文地质学家们多年的观察研究,对于控制地下水主要补给和排泄作用的自然及人为因素,已有深刻的认识。

影响大气降水入渗补给地下水的因素比较复杂,其中年降水总量、包气带特征和地形条件影响最大,降水的时空特征、地下水埋深、地面植被状况也有一定影响。而潜水的蒸发消耗则主要与潜水位的埋藏深度和包气带土层渗透性有关。

地表水对地下水的补给作用主要发生在地表水水位高出地下水位的地段,其补给量的大小则与渗漏补给段岩石的渗透性有关,干旱和半干旱地区的山前扇形地的上部和地下水深埋的岩溶山区,是河水补给地下水最有利的地段。在我国西北地区,许多山间盆地和山前平原区,地下水资源的70%~85%几乎都来源于山区河水的渗漏补给。

地下水径流的补给(又称侧向补给量)和排泄作用,主要决定于含水层的渗透性、过水断面面积以及地下水的水力坡度。径流、补给和排泄,一般在径流条件较好的岩溶水区和山前平原区的中—上部位,对地下水资源的形成有较大的意义。

地下水越流补给和排泄作用,主要决定于相邻含水层之间相对隔水层渗透性、厚度以及补、排含水层之间的水头差。在天然条件下,两者之间的水头差一般很小,因此,补、排水量有限,但当其从其中一个含水层大量取水后,由于水头差的加大,则大大增加非开采含水层对开采含水层的越流补给量。当开采平原区深部承压含水层时,上部潜水含水层的越流补给常常要占很大比重。

二、地下水补、排量的研究方法

地下水的补给和排泄量都可用来表征地下水资源的多少。因此水文地质学家们一直都很重视地下水补给量和排泄量的确定方法。研究方法可以归结为两类,即直接的实测法和模型计算法。

直接测定法:应该说这是最为可靠的方法,但是许多地下水补给项和排泄项的水量形成过程十分复杂,影响因素很多,因此很难设计出科学的测验方法,也很难判断测量结果的可靠性和代表性。到目前为止,真正能够直接测量到的补给和排泄量,只有地下水的泉水排泄量和某些河流段地下水对河的排泄量和河流对地下水的补给量。

对地下水补给最重要的降水入渗量和排泄中最重要的潜水蒸发量,水文地质学家力图设计出直接测定它们的仪器装置。图3-7所示的地中渗透仪,便是目前各国普遍使用的一种测量降水入渗补给强度和潜水蒸发强度的装置。整个装置是根据连通管原理设计的,连通管的室外一端装置有数个代表当地包气带岩性的土柱,通过室内的水位调节管可控制土柱内的潜水位;量筒中收集到的水量即为降水对地下水的入渗补给量;给水瓶中消耗的水量即为潜水的蒸发排泄量,尽管这个装置的原理是正确的,但它还是难于反映出客观上复杂多变的包气带土层结构、潜水位的不同埋深与降水入渗与潜水蒸发的种种复杂因素,因而还是不尽如意。根据这个原理设计出的类似装置,也可测量灌溉水的入渗补给量和沙漠地区的凝结水补给量。

图3-7 地中渗透计示意图

模型计算法:把补给或排泄的渗流(饱和或非饱和的)概化成一定的渗流运动模式,再采用相应的数学模型计算出补给量或排泄量。例如,对于含水层之间的越流补给(或排泄量)、地下水径流补给(或排泄量),一般都可采用达西公式进行计算。

目前水文地质界研究最多的是降水入渗补给量的计算模型。在20世纪60年代之前是根据用各种方法确定的大气降水入渗系数去计算降水的入渗补给量。所谓降水入渗系数是指:大气降水入渗补给量与大气降水量(一般以水柱高度为单位)之比值。因此,某一地区的大气降水入渗补给地下水量(Q渗),可用下式计算:

现代水文地质学

式中:F——计算区面积(m2);

x——年降水量(m);

a——降水入渗系数(无因次)。

上式中的降水入渗系数,可根据计算区内代表性地段,可近似表征降水入渗补给量且易取值的地下水的补给或消耗项以及补给区面积来计算。例如,对于某些降水是惟一补给来源,泉流量是惟一排泄方式的岩溶泉域,其降水入渗系数(a)则近似等于岩溶大泉流量与泉城(泉水的地下汇水范围)内的大气降水量之比。

自20世纪60年代之后,随着水文地质学家对包气带含水量的分布规律研究工作的深入和土壤水分观测技术的进步,相继提出了一些以包气带土层含水率分布为基础的降水入渗补给量的计算模型。现主要介绍目前已广泛使用的零通量面法。

图3-8 包气带土层含水率剖面

图3-8是采用中子水分仪或负压计所测得的Δt时段内包气带不同深度含水率变化剖面:t1为补给期内某一时刻含水率曲线;t2为非补给期内某一时刻的含水率曲线。Z0为水分零通量面(记作DZEP)位置深度,零通量面是指水分通量为零的面,它是水分蒸发影响的下限深度。该面以上水分向上运移,消耗于蒸发与蒸腾;该面以下水分缓慢下移,最终补给潜水,故零通量面可作为测算降水入渗补给量和潜水蒸发量的一个分界面。

按质量守恒原理,当剖面上无其他水量源汇项存在时,潜水所获得的降水入渗补给量,将等于DZEP面以下全年各时段内包气带剖面水分储存量的减少量。设包气带剖面有i个含水率观测点,ΔZi为每个观测点所代表土柱高度(i=1,2,…,m),年内的观测时段数j为1,2…k,故全年的降水入渗补给量可用下式计算:

现代水文地质学

式中:Q(Z,tj)和Q(Z,tj+1)为某一深度土柱相邻时段的含水率。

按同样的原理,用DZEP面以上不同时段的包气带含水率变化曲线也可推出与上式形式类似的陆面蒸发及蒸腾量的计算公式。

三、地下水的径流特征

地下水和地表水一样,除了某些构造上的封闭盆地和古老的封存水外,总是处在不断流动的状态。这种不断流动的地下水体即称为地下水径流(简称地下径流)。

地下径流是连接地下水补给与排泄的中间环节,或者说地下径流是地下水补给量转化为排泄量的中间过程。因此地下径流量的大小可表征地下水补给量的丰、贫程度,或者可说表征出地下水资源的更新能力;同时地下径流在流经途径中与岩石组分的化学作用和与外围环境的物质或能量交换作用也决定了地下水的水质特征。因此,研究地下水的径流特征是研究地下水资源质与量形成的一个重要的基础理论。

(一)地下水的径流要素

地下径流要素包括:径流方向、径流强度及径流量。

地下水的总体流向总是从补给区指向排泄区,但在基岩裂隙山区,地下径流的流向在很大程度上受到阻水地质界面和强透水通道分布方向的制约,可以在小范围内出现较大的变化。

地下水的径流强度:径流强度包括了两方面的科学含意,一是指地下水流动速度的大小,二是指通过某一径流断面的流量大小。但地下水的实际流速和径流量都是不易实际测定的数据,故在水文地质学中,经常用另一个指标——地下径流模数(Mg)表征地下径流的强度。地下水径流模数是指单位时间从每一平方公里含水层分布面积上流出的地下水量。其计算公式为:

现代水文地质学

式中:F——含水层分布面积(km2);

Q——含水层的地下径流量(m3/d),可根据达西公式计算或实际测定。

地下径流条件的好和差,决定于一系列的地质及自然地理因素,其中最重要的影响因素是含水层的渗透性和地下水的水力坡度。一般说岩层的渗透性愈好,水力坡度越大则径流条件就越好;如果地下水的水力坡度很小(如平原区,盆地中心),即使含水层的透水性再好,径流条件也不会好。同样,如果水力坡度再大,岩石的渗透性很差,也不可能有好的径流条件。

(二)地下径流的表述方法

在20世纪40年代以前,水文地质学家们一般都把地下水径流看作平面的二维运动,因此,采用了平面上的等水位线图(或称地下水位等高线图)来反应地下水的径流特征,垂直等水位线的方向即为地下水的径流方向;等水位线的间距可反映出地下水的水力坡度。

从20世纪40年代起,随着研究工作的深入,水文地质学家们发现,在大多数情况下,地下水的垂向运动是不能忽略的,否则很多有关地下水的理论与实际问题都无法解决。1940年赫伯特(M.K.Hubbertt)首先在其论文中发表了反映地下水水平和垂向运动特征的河间地块地下水的剖面流网(图3-9)。

剖面流网的引入,把传统水文地质学理论带入了新的科学境界,以赫伯特的河间地块地下水流网图为例,深入分析后可以得到以下认识:①由河间地块分水岭到两侧的河谷,地下径流方向经历了由上到下→接近水平→再从下到上的复杂变换过程;②在地下水补给区的分水岭上,随着深度的增加,地下水水头压力逐渐减小,而在地下水排泄区的河谷地带,则随着深度增加,水头值增大;③由分水岭到河谷,流线越来越密集,地下径流加强,径流量增大;④由地表向深部地下径流逐渐减弱;⑤即使整个河间地块为均质含水层,但含水层的不同地段和不同深度上,地下水水头值也是变化的。在河谷地段的深井,无须有隔水层的存在,也可以开凿出自流或承压水井。因此,对传统潜水和承压水的概念应重新进行定义。

图3-9 河间地块流网图

(三)地下水系统

地下水系统是20世纪60年代开始,托特(J.Toth)、弗里泽(R.A.Freeze)、威瑟斯庞(P.A.Witherspoon)以及英格伦(G.B.Engelen)等人用系统理论方法研究地下水区域径流特征后,得出来的一项重要成果,也是水文地质学家为解决人类大规模开采地下水资源时所产生的区域资源平衡和环境负效应问题而不得不去研究的问题。同时也为揭示地下水的区域化学特征和水温变化特征提供了依据。

1963年托特在严格的假定条件下,利用解析解绘制出均质各向同性潜水盆地中理论的地下水流系统图(图3-10),他在分析区域地下水径流特征后得出结论:即使是在均质各向同性的潜水盆地中,在不同水势分布条件下,也可存在三个不同级次(不同深度、不同范围)的地下水流系统,即局部的、中间的和区域的水流系统。随后,弗里泽和威琴斯庞利用数值解得出了层状非均质介质中的地下水流系统图。与此同时,荷兰的英格伦教授,进一步分析了形成地下水流动系统的物理机制,建立了一套着重解决水文地质问题的地下水流系统概念与方法。我国的著名水文地质学家陈梦熊及时将地下水系统理论引入中国,并在某些方面发展了这一理论,应用这一理论解决了中国许多地区的区域地下水资源评价与开发问题(陈梦熊,1998)。

关于“地下水系统”至今尚未形成一个完整的、为绝大多数水文地质学家所赞同的科学定义。

国际上知名的水文地质学家荷兰阿姆斯特丹自由大学的英格伦教授认为“地下水系统”可以看作在时间和空间上具有四维性质、能量不断新陈代谢的有机整体。陈梦熊院士认为:“地下水系统是一个错综复杂,受各种天然因素、人为因素所控制,具有不同等级的互有联系又互相影响,在时空分布上具有四维性质和各自特征,不断运动演化的若干独立单元的统一体”。在这里,本书作者认为把以上定义末尾的“若干独立单元的统一体”一词,改为“若干独立又具统一性的水动力单元”,也许更为合适。

图3-10 均质各向同性潜水盆地中的理论流动系统

关于地下水系统的结构与分级,作为大范围的区域性地下水系统,一般多与地表水的某一级流域或盆地相对应。每一独立地下水系统下,又可根据区域地下水的补排条件、次级水系、含水层结构、水动力或水化学特征,进一步划分为若干亚系统,以及再下一级的子系统。

径流分为什么阶段?

农田径流

雨水或灌溉水流过农田表面后排出的水流,是农业污水的主要来源。农田径流中主要含有氮、磷、农药等污染物。

①氮:施用于农田而未被植物吸收利用或未被微生物和土壤固定的氮肥,是农田径流中氮素的主要来源。化肥以硝态氮和亚硝态氮形态存在时,尤其容易被径流带走(见化肥污染)。农田径流中的氮素还来自土壤的有机物、植物残体和施用于农田的厩肥等。一般土壤中全氮含量为0.075~0.3%,以表土层厚15厘米计,全氮含量每公顷为1500~6000公斤,每年矿化的氮每公顷约30~60公斤。不同地区和不同土壤上农田径流的含氮量有较大的差别。如英国田间排水中含铵态氮0.5毫克/升,硝态氮17毫克/升,每年径流量以100毫米计,铵态氮每公顷为0.5公斤,硝态氮为17公斤。瑞典农田径流中含铵态氮0.09毫克/升,硝态氮4.1毫克/升。有些地区硝态氮为20~40毫克/升,甚至达81.6毫克/升。

②磷:土壤中全磷量为0.01~0.13%,水溶性磷为0.01~0.1ppm。土壤中的有机磷是不活动的,无机磷也容易被土壤固定。荷兰海相沉积粘土农田径流中含磷约0.06毫克/升,河流沉积物粘土农田径流中含磷约0.04毫克/升,从挖掘过泥炭的有机质含量丰富的土壤流出的径流中含磷量约0.7毫克/升,水稻田因渍水可使土壤中可溶性磷量增加,每年失磷较多,每公顷约为0.53公斤。

土壤中的氮、磷等营养元素,可随水和径流中的土壤颗粒流失。大部分耕地含磷0.1%、氮0.1~0.2%、碳1~2%,因此,农田土壤侵蚀1毫米,每公顷土壤的径流中有磷10公斤、氮10~20公斤和碳100~200公斤。

③农药:农田径流中农药的含量一般不高,流失量约为施药量的5%左右。如施药后短期内出现大雨或暴雨,第一次径流中农药含量较高。水溶性强的农药主要在径流的水相部分;吸附能力强的农药(如 2,4-D、三嗪等)可吸附在土壤颗粒上,随径流中的土壤颗粒悬浮在水中。

饲养场污水

牲畜、家禽的粪尿污水是农业污水的第二个来源。饲养场污水可作为厩肥,但是工业发达的国家往往弃置不用,造成环境污染问题。作为厩肥使用,大都采用面施的方法,如果厩肥中大量可溶性碳、氮、磷化合物还未与土壤充分发生作用前就出现径流,也会造成比化肥更严重的污染。目前,对于厩肥还没有完善的检测方法确定其营养元素的释放速度,以推算合理的用量和时间。因而,这类的径流污染是难以避免的。

饲养场牲畜粪尿的排泄量大,用未充分消毒灭菌的粪尿水浇灌菜地和农田,会造成土壤污染;粪尿被雨水流冲到河溪塘沟,会造成饮用水源污染。在饲养场临近河岸和冬季土地冻结的情况下,这种污水对周围水生、陆生生态系统的影响更大。

农产品加工污水

水果、肉类、谷物和乳制品的加工,以及棉花基本染色、造纸、木材加工等工业排出的污水是农业污水的第三个来源。在发达国家农产品加工污水量相当大,如美国食品工业每年排放污水约25亿吨,在各类污水中居第五位。

地下水天然资源量计算

流域的降水,由地面与地下入河网。流出流域出口断面的水流,称为径流。液态降水形成降雨径流,固态降水则形成冰雪融水径流。由降水到达地面时起,到水流流经出口断面的整个物理过程,称为径流形成过程。降水的形式不同,径流的形成过程也各异。我国的河流以降雨径流为主,冰雪融水径流只是在西部高山及高纬地区河流的局部地段发生。

从降雨到水流汇集至出口断面的整个过程,称为径流的形成过程。在不考虑大量人类活动的影响下,径流的形成过程大致可以分为以下几个阶段:

1.降雨阶段

降雨是径流形成的初始阶段,是径流形成的必要条件。

对于一个流域而言,各次降雨在时间上和空间上的分布和变化不完全相同。一次降雨可以笼罩全流域,也可以只降落在流域的部分地区。降雨强度在不同地区是不一致的,雨强最大的地区称为暴雨中心,各次降雨的暴雨中心不可能完全相同。同一次降雨过程中,暴雨中心位置常会沿着某个方向移动,降雨的强度也常随时间而不断变化。

2.蓄渗阶段

降雨开始以后,地表径流产生以前的植物截留、下渗和填洼等过程,称为流域的蓄渗阶段。在这一过程中消耗的降雨不能产生径流,对径流的形成是一个损失。不同流域或同一流域的不同时期的降雨损失量是不完全相同的。

在植被覆盖地区,降雨到达地面时,会被植被截留一部分,这部分的水量称为截留水量。降雨初期,雨滴落在植物的茎叶上,几乎全被截留。在尚未满足最大截留量前,植被下面的地表仅能得到少量降雨。降雨过程继续进行,直至截留量达到最大值后,多余的水量因重力作用和风的影响才向地面跌落,或沿树干流下。当降雨停止后,截留的水分大部分被蒸发。

雨水降落到地面后,在分子力、毛管力和重力的作用下进入土壤孔隙,被土壤吸收,这一过程称为下渗。土壤吸收并能保持一部分水分(吸着水、薄膜水、下悬毛管水等)。土壤保持水分的最大能力,称为土壤最大持水量。下渗的雨水首先满足土壤最大持水量,多余的才能在重力作用下沿着土壤孔隙向下运动,到达潜水面,并补给地下水,这种现象称为渗透。

降雨满足植物截流和下渗以后,还需要填满地表洼地和水塘,称为填洼。只有在完成填洼以后,水流才开始外溢,产生地表径流。

降雨停止后,洼地蓄水大部分消耗于蒸发和下渗。

3.产流漫流阶段

产流是指降雨满足了流域蓄渗以后,开始产生地表(或地下)径流。根据地区的气候条件,可将产流分为两种基本形式:蓄满产流和超渗产流。

蓄满产流大多发生在湿润地区。由于降水量充沛,地下水丰富,潜水面高,包气带薄,植被发育好,土壤表层疏松,下渗能力强,所以降雨很容易使包气带达到饱和状态。此时,下渗趋于稳定,下渗的水量补给地下水,产生地下径流。当降雨强度超过下渗强度时,则产生地表径流。因为蓄满产流是在降雨使整个包气带达到饱和以后才开始产流,所以又称饱和产流。

超渗产流大多发生在干早地区地下水位较低、包气带较厚、下渗强度较小的流域,当降雨强度大于下渗强度时,就开始产流。在产流过程中,降雨仍在继续下渗(下渗量决定于雨前的土壤含水量)。一次降雨过程中,很可能包气带达不到饱和状态,所以又称非饱和产流。

蓄满产流主要决定于降雨量的大小,与降雨强度无关:超渗产流则决定于降雨强度,而与降雨大小无关。我国淮河流域以南及东北大部分地区以蓄满产流为主;黄河流域、西北地区的河流以超渗产流为主,其他地区具有过渡的性质。

流域产流以后,水流沿地面斜坡流动,称为漫流,又称坡地漫流。

4.集流阶段

坡地漫流的水进入河槽以后,沿河槽从高处向低处流动的过程称集流阶段。此为降雨径流形成过程的最终阶段。各大小支流的水量向干流汇入,使干流水位迅速上升,流量增加。当河槽水位上升速度大于两岸地下水位上升速度时,河水补给地下水;当河流水位下降后,反过来由地下水补给河水,这称为河岸的调节作用。与此同时,河槽蓄水逐渐向出口断面流去。即河槽本身也对径流起调节的作用,称为河槽的调节作用。一般河网密度大的地区,河流较长,河槽纵比降小。河水下泄速度慢,河槽的调节作用大;反之河槽调节作用就小。

在影响河川径流形成与变化的因素中,气候因素是最主要的因素。在流域范围内不论以何种形式进入河槽的水均来源于大气降水,且与降水量、降水强度、形式、过程及空间分布有关。降水强度和形式与径流形成的关系十分密切。在以降雨补给为主的河流,每次降雨可产生一个小洪峰。一年中降雨集中的时期,河流径流量最大,进入洪水期。强暴雨时,雨水在土壤中的下渗量小,汇水时间短,常可造成特大洪峰。此时由于强暴雨对地藤的侵蚀、冲刷十分强烈,进入河水的泥沙量也明显增加。以冰雪融水补给为主的河流,往往在春季融冰雪或夏季冰川融化时出现洪峰,具有明显的日变化与季节变化。

降水过程与径流形成过程有关。当降水过程为先小后大时,先降落的小雨使全流域蓄渗,河网内蓄满了水;之后再降的大雨则因为下渗量减小,几乎能全部变成径流,加之这时的河槽调蓄作用也大大减弱,易形成大洪水。

蒸发量的大小直接与径流有关。在降水转变为径流的过程中,水量损失的主要原因就是蒸发。我国湿润地区降水量的30%~50%、干旱地区降水量的80%~95%均消耗于蒸发。扣除蒸发量后,其余部分的降水才能作为下渗、径流量。流域的蒸发包括水面蒸发和陆面蒸发,陆面蒸发中又包括土壤蒸发与植物蒸腾。此外,气温、风、湿度等气候因素也间接地对径流的形成与变化有影响。

在流域的地貌特征中,流域坡度对河川径流的形成有直接影响。流域坡度大,则汇流迅速、下渗量小、径流集中;反之则径流量减少。流域的坡向、高程是通过降水和蒸发来间接影响河川的径流的。如高山使气流抬升,在迎风面常可产生地形雨,使降水量增加,径流量较大;而背风面雨量较少,径流量也减小。地势愈高,气温愈低,蒸发量愈小,径流量则相应增加。

喀斯特地貌发育地区往往有地下蓄水库存在,对径流的形成起调蓄作用。由于地表河流与地下河流相互交替,地下分水线与地面分水线常常很不一致,有时径流总量可大于流域的平均降水总量。

地质构造和土壤特性决定着流域的水分下渗、蒸发和地下最大蓄水量,对径流量的大小及变化有复杂的影响。一些地质构造有利于地下蓄水(如蓄水盆地),断层、节理、裂隙发育的地区也具有贮存地下水的良好条件,并且可以出现流域不闭合的现象。土壤类型和性质直接影响下渗和蒸发。例如:砂土下渗量大,蒸发量小,而黏土则下渗量小,蒸发量大,因此在同样条件下,砂上地区形成的地表径流往往较小,而地下径流却较大。

地表的植被能截留一部分水量,起到阻滞和延缓地表径流、增加下渗量的作用。在植被的覆盖下,土壤增温的速度减小,使蒸发减弱。在森林地区,高大的林冠可阻滞气流,使气流上升,增加降水量。植被根系对土壤的保持作用可防止水土流失,减少地面侵蚀。

总之,森林植被可以起到蓄水、保水、保土的作用,削减洪峰流量,增加枯水流量,调节径流的分配。

湖泊和沼泽是天然的蓄水库,大湖泊对河川径流的调节作用更为显著。干旱地区湖面的蒸发量极大,对河川径流量的影响十分明显。沼泽使河水在枯水期能保持均匀的补给,起到调节径流的作用。

人类活动也在一定程度上影响着河川径流的形成和变化。人工降雨和融冰增加了径流量;修筑水库可以调蓄水量:跨流域的调水工程改变了径流的地区分布不均匀性。其他如农田灌溉、封山育林等也会改变径流的分布。

洪水是因暴雨或其他原因,使河流水位在短时间内迅速上涨而形成的特大径流。当河流发生洪水时,河槽常常不能容纳所有的来水,洪水泛滥成灾,威胁沿岸的城镇、村庄、农田等。连续的暴雨是造成洪水的主要原因,大量冰雪融化也可造成洪水。流域内的降水分布、强度、暴雨中心的移动以及水系的性质都对洪水有一定的影响。

洪水按补给条件可分为暴雨洪水和冰雪融水洪水两类。暴雨洪水来势凶猛,常造成特大径流量,流量过程线峰段尖突。如发生在夏季,称为夏汛,发生在秋季则称为秋汛。我国大多数河流常受到暴雨洪水的威胁。因此,在水文研究上应引起特别重视。

我国北方河流常在春季天气回暖季节发生由冰雪融水造成的洪水,称为春汛或秋汛。冬季因局部河段封冻,使上游水位抬高,可引起局部性的洪水。冰雪融水洪水的特点是径流量较小,汛期持续时间长,流量过程线变化不如暴雨洪水明显。

按水的来源又可将洪水分为上游演进洪水和当地洪水两类。上游演进洪水是指河流上游径流量增大,使洪水自上而下推进,洪峰从上游到下游出现的时间有一段时间间隔。当地洪水是由所处河段的地面径流形成的,如全流域全部为暴雨所笼罩,则可造成特大的洪峰,危害性极大。如河南1975年8月发生的特大洪水是历史上非常罕见的。

对于同一条河流而言,一般上游洪峰比较尖突,水位暴涨暴落,变幅大;下游洪峰则渐趋平缓,水位变幅也变小。洪水的传播速度与河道的形状有关,如河道平直整齐,洪水的传播就快;如河道弯曲不规则,则洪水的传播较慢;若流经湖泊,则洪水的传播速度更慢。

洪水期间,同一断面上总是首先出现最大比降,接着出现最大流速,然后出现最大流量,最后出现最高水位。

与洪水径流相对的是枯水径流。枯水是指断面上流量较小,通常发生在地表径流的后期,河水主要靠流域的蓄水量及地下水补给。枯水季节大部分发生在冬季,径流量明显变小。它与水力发电、航空、农田灌溉、工业用水和生活用水等有密切的关系。

枯水期径流量的大小与枯水前期降水量的大小有密切关系。前期降水量大,地下蓄水量多,地下径流量大,河流在枯水期尚能保持一定的水量。反之,如前期降水量小,土壤中地下水量少,则常造成河流流量小,甚至出现断流。流域地质条件影响着河流在枯水期的流量。如砂砾层常能储存较多的地下水,在枯水期可以补给河流。湖泊、沼泽、森林及水库等常可调节水量,从而增加河流枯水期的流量。径流是水循环的基本环节,又是水量平衡的基本要素,它是自然地理环境中最活跃的因素。从狭义的水资源角度来说,在当前的技术经济条件下,径流则是可以长期开发利用的水资源。河川径流的运动变化,又直接影响着防洪、灌溉、航运和发电等工程设施。因而径流在水资源利用方面有着举足轻重的地位和作用。

排渍模数名词解释

以多年平均天然补给量作为地下水的天然资源量,天然资源量补给项包括:大气降水入渗补给量、侧向径流补给量、河流渗漏补给量、地表水灌溉补给量。地下水灌溉回渗补给量为地下水重复计算量,不包括在天然资源中。其计算方法是利用长系列(1956~2000年)的水文、气象资料,取其多年平均值进行计算,计算单元与计算方法与均衡计算相同。全区共划分为16个气象分区,计算单元的降水量、蒸发量采用控制气象站的多年算术平均值,并按统计经验频率分别计算丰水年(降水频率为25%)、平水年(降水频率为50%)、枯水年(降水频率为75%)的降水量,计算不同降水水平年的地下水补给资源量。

一、天然资源计算

(一)降水渗入补给量

大气降水入渗补给是本区地下水的主要补给源,其入渗量与降水量、潜水水位埋深及包气带岩性等条件有关。根据包气带岩性和潜水位埋深将全区划分为76个降水入渗系数分区,131个计算段,计算公式为

Q降水=10-1·α.X.F

其中:Q降水为降水对地下水补给量,104m3·a-1;α为渗入补给系数;X 为计算时段有效降水量(mm/a),按全年降水的90%计算;F为计算单元内陆地面积F(km2),扣除了计算单元内的水体面积。

(二)地下径流侧向补给量

盆地周围均是基岩山地丘陵区,其侧向补给地下水的量很有限,地下水侧向径流补给主要来自于山区河流的地下水径流,全区共有补给断面25条,根据达西定律,各个断面的侧向径流量按如下公式计算:

Q侧补=10-4·K·M·B·J·丁

式中:Q侧补为地下水侧向流出量,104m3·a-1;K为补给断面平均参透系数,m/d;M 为补给断面含水层平均厚度,m;I为补给断面的地下水力坡度;B 为补给断面宽度,m;T 为补给时段长(365 d)。计算结果见表6—11。

(三)河道渗漏补给量

从地下水等水位线与河流关系分析,盆地内对地下水有补给的河流分布在西部山前倾斜平原与嫩江的齐齐哈尔江段。其中,霍林河近几年干枯,洮儿河2004年也已干枯,因此这两条河流2004年没有计算入渗量。河流渗漏补给量按以下公式计算:

Q河渗=10-4·B·L·K·(H河—H)/M·丁

式中:Q河渗为河道渗漏补给量,104m3·a-1;H河为河流水位,m;H 为地下水位,m;B为河床宽度,m;L为计算段河流长度,m;K为河床底积层渗透系数,m/d;M 为河床底积层厚度,m;丁为补给时段长(d),这里取155~185 d。

洮儿河入渗补给量采用上、下游流量差计算河水入渗量,将上游水文站镇西站和务本站的河道来水量减去下流水文站洮南站的河道来水量和区间引出水量作为扇形地河道渗漏补给量。用公式表示为:

Q河补=Q镇西+Q务本—Q洮南—Q引水

式中:Q河补为河道渗漏补给量,104m3·a-1;Q镇西、Q务本、Q洮南为镇西、务本、洮南水文站河流多年平均径流量,104m3·a-1;Q引水为上、下游站之间的引用河水量,104m3·a-1,为Q引水=900× 104m3·a-1。

根据1956~2004年的水文资料统计,Q镇西=155 199×104m3·a-1,Q务本=246 211.17×104m3·a-1,Q洮南=143 818×104m3·a-1,计算得Q河补=24 692.17×104m3·a-1。河流渗漏补给量计算结果见表6—12。

(四)灌溉水回渗补给量

灌溉回渗水量主要是水田灌溉回渗,回渗水量计算公式:

Q回=10-4β回·Q灌·F

式中:Q回为农田灌溉水回渗补给量,104m3·a-1;Q灌为灌溉定额,m3·hm-2;F为水田面积, hm2;β回为灌溉回渗补给系数。

二、天然资源量计算结果

计算结果见表6—19,全区地下水多年平均补给资源量为131.8082×108m3,其中,降水入渗补给量为111.5804×108m3,占补给量的84.6%,侧向补给量为2.7721×108m3,占2.1%,河流渗漏补给量为9.0442×108m3,占6.9%,地表水灌溉回渗量为8.4115×108m3,占6.4%。枯水年(降水频率为75%)补给量为109.6291×108m3,比多年平均少22.1782×108m3。

表6—19 天然资源计算成果表

续表

三、地下水可开采量确定

本次地下水开采资源计算采用水均衡法、平均布井法及开采系数法。

(一)水均衡法

水均衡法计算地下水开采资源量是通过总补给量减去不可夺取的地下水排泄量得到的。不可夺取的排泄量包括不可夺取的蒸发排泄量、不可夺取的河流排泄量、不可夺取的侧向排泄量及不能夺取的湖泡排泄量。

松嫩平原地下水资源及其环境问题调查评价

1.不可夺取的蒸发排泄量

地下水位即使是降到蒸发极限深度以下,仍存在一部分蒸发量,根据低平原地下水位下降不超过10 m,高平原不超过15 m,河谷平原不超过5 m 这样一个开采方案,通过潜水蒸发率随地下水位下降变化曲线图查得蒸发系数,计算地下水的不可夺取的蒸发量。

2.不可夺取的河流排泄量

在开采状态下,由于地下水位降低,河流排泄将会减少,但在东部高平原地下水位是无法降至河水位以下的,仍将会有一部分地下水排向河流。从维持河道生态环境角度考虑,河流必须保持一定的最低水量,按照水利部门确定的河道最低需水量为多年平均河道水量的25%,来确定全区地下水最低河流排泄量为多年平均的25%。

3.不可夺取的侧向流出量

侧向流出只有松花江河谷一个出口,在未来开采条件下减少不大,因此,仍按现状条件下的径流排泄量计算。

4.不可夺取的湖泡排泄量

松嫩低平原湖泡星罗棋布,与地下水联系密切,有的常年接受地下水补给。虽然湖泡排泄地下水量是完全能够夺取的,但必将导致湖泡消失,生态环境严重恶化。松嫩平原湖泡数量和水域面积已经到了再也不能减少的程度,要保持目前的湖泡数量和水域面积,就必须有一部分地下水补给湖泡,这是不能夺取的地下水排泄量,地下水湖泡排泄量按现状条件计算。均衡法计算开采资源结果见表6—20。

表6—20 水均衡法计算开采资源表 (单位:108m3·a-1)

(二)开采系数法

开采系数法计算地下水可采资源量是一种简单有效方法,它直接以补给资源量为依据,乘以开采系数获得开采资源量,开采系数最大值分布在西部扇形地,为0.87;最小值分布在东部高平原为0.65。经计算,全区开采资源量为102.3603×108m3(见表6—21)。

表6—21 开采系数法计算地下水开采资源量结果表

(三)平均布井法

平均布井法是以水文地质参数为依据计算地下水开采资源的一种方法。松嫩平原水文地质勘察资料比较丰富,不同地段、不同深度含水层的水文地质条件比较清楚,可以获得比较准确的单井涌水量。本次是采用稳定流平均布法计算地下水开采资源,布井面积为陆地面积(不包括玄武岩区),采用方形网格布井,井距、单井涌水量根据前人资料和现状开采经验值确定,地下水位降深潜水设计为5 m,承压水为15 m。在高平原缺水区评价了白垩系地下水开采资源,评价深度为200 m。

计算公式为:      Q开=102·Q单·n

n=F/L2

式中:Q开为开采资源量,104m3·a-1;Q单为单井涌水量,m3·a-1;F为布井面积km2;L为布井间距(m),单井引用影响半径的2倍。

经计算,全区开采资源为101.5230×108m3,计算结果见表6—22。

(四)开采资源量的确定

通过三种方法计算的全区地下水开采资源量:均衡法计算结果为105.7016×108m3、开采系数法计算结果为102.3603×108m3、平均布井法计算结果为101.5230×108m3。均衡法从水量均衡角度控制全区及各系统的开采资源,开采系数法则是依据补给资源量确定开采资源量,全区开采系数为0.78,平均布井法则是从具体的水文地质条件出发计算地下水开采资源量。三者相互验证,结果比较接近,增加了开采资源量计算的可靠性,以平均布井法计算的开采资源量作为全区的开采资源量,即101.5230×108m3。

表6—22 平均布井法计算开采资源成果表

四、多年平均补给量与排泄量分析

全区地下水总补给量为134.1475×108m3,按目前开采量计算的总排泄量为137.7287×108m3,二者相差—3.5812×108m3,总排泄量略大于补给量,各亚区也都呈现排泄量略大于补给量的现象,全区呈负均衡。这与全区地下水水位下降的实际情况一致。近20年来,气候总体偏旱,降水量偏少,地下水开采量增加较快,地下水位出现不同程度的下降,山前倾斜平原下降幅度最大,达2~7 m,主要原因是降水和大兴安岭河流来水减少;中部低平原平均下降1~2 m,主要原因是开采量增加较大而引起;东部高平原地下水位下降程度差异较大,松花江干流亚系统水位下降幅度较大,第二松花江亚系统水位下降幅度较小,河谷平原变化幅度最小。

(一)地下水总补给量及其近20年的变化

全区地下水总补给量为134.15×108m3,天然资源量为131.81×108m3。补给量中降水入渗补给为111.58×108m3,占总补给量的83%,占天然资源的85%。区外地下水流入2.77×108m3,河流转化补给9.04×108m3,地表水转化为灌溉渗入补给8.41×108m3,地下水灌溉回渗2.34×108m3。近20年地下水补给量呈现减少的趋势,总补给量比1984年减少了14.06×108m3,比1994年减少8.81 ×108m3。其主要原因,第一是自1998年洪水以来该地区降水量一直偏小,1999年以来的大气降水平均为395.84 mm,比多年平均值475 mm减少了79.16 mm。在几个主要气象观测站当中,长春站减少了114.1 mm,白城站减少130.5 mm,哈尔滨站减少42.4 mm,齐齐哈尔站减少46.5 mm;第二是由于降水量减少,导致河流径流量减少,从而导致河流渗漏补给量减少;第三是大量开发地下水使水位下降,补给途径增长,降水补给入渗率降低。

(二)地下水排泄量及其近20年的变化

全区地下水总排泄量为137.73×108m3,其中蒸发55.65×108m3,河流排泄18.13×108m3,湖泡排泄5.36×108m3,侧向流出0.27×108m3,开采58.16×108m3,人工开采已成为地下水的主要排泄方式。与1984年相比,天然排泄总量比1984年减少35.76×108m3。其中蒸发量比1984年增加了6.69×108m3;径流排泄量(包括向河流排泄、湖泡排泄量、泉的排泄量)减少了42.45×108m3;人工开采量增加了29.48×108m3,人工开采量夺取的主要是地下水河流排泄量。

(三)近20年来开采资源量的变化

近20年来,由于地下水补给资源量的减少,导致可开采资源量的减少。可开采量比1984年减少了18.99×108m3,比1994年减少了7.5×108m3(图6—2)。与此同时,地下水开采量由1984年的28.68×108m3,增加到58.16×108m3,增加了29.48×108m3。可开采资源量减少的主要原因是地下水补给量减少,在实际开采过程中出现资源枯竭,水位持续下降。

图6—2 近20年来补给资源量与开采资源量的变化

排渍模数又称地下排水模数,是单位面积内排出的地下径流量。

一、排渍模数详细名词解释

排渍模数是指单位面积内排出的地下径流量,通常以每秒每平方千米为单位。排渍模数在排水工程中用于计算排渍流量,它是设计暗管尺寸和排水沟排渍水深的重要依据。具体而言,可以通过将所控制的排水面积与排渍模数相乘来估算排渍流量。

二、与排渍模数计算需有关的数值

1、排水面积

排水面积是指需要进行排渍处理的区域的总面积。该区域可以是一个城市、一个农田、一个水利工程区域等。确定排水面积时,需要考虑地形、土地利用类型、降水量以及周围流域的情况。

2、地下水位变化

地下水位的变化对排渍模数的计算和排水系统设计至关重要。地下水位的高低决定了地下水的渗透和排水的难度,因此需要准确测量和了解地下水位的变化情况,以便进行合理的排渍模数计算。

3、土壤渗透性

土壤渗透性指的是土壤对水的透过性能。不同类型的土壤具有不同的渗透性,如沙质土壤通常具有较高的渗透性,而粘质土壤则通常具有较低的渗透性。准确了解排渍区域的土壤类型和渗透性是计算排渍模数的关键因素。

4、设计暗管尺寸

排渍模数的计算在设计暗管尺寸方面有着重要的应用。根据计算得到的排渍流量和其他因素,可以确定所需的暗管尺寸,包括管径、管材质量等。合理的设计暗管尺寸可以确保有效的水流排出和排水系统的正常运行。

5、排水沟排渍水深

排水沟的排渍水深是指水沟中的水位高度。通过计算排渍模数可以确定所需的排渍水深,以确保排水沟能够容纳所产生的排渍流量。排渍水深的确定需要考虑沟槽的尺寸、坡度以及来水的流量等因素。

排渍模数在现实生活中的应用

1、水利工程规划与设计

排渍模数在水利工程规划和设计中起着重要作用。通过计算排渍模数,可以确定所需的排渍流量,为水利工程项目提供重要依据,如水库、堤防、排灌工程等。

2、城市排水系统设计

在城市排水系统设计中,排渍模数用于估算排渍流量,确定排水管道和下水道的尺寸和容量。通过合理计算排渍模数,可以确保城市的雨水和废水得到有效排除,避免城市内涝和排水系统超负荷运行。

3、农田排水

农田排水是农业生产中的重要环节,排渍模数应用于农田排水系统的设计和管理。通过计算排渍模数,可以确定农田排水设施的尺寸和布局,确保农田在降雨后能够迅速排出多余的水分,维护农作物的生长环境。

4、地下排水管理

在地下排水管理中,排渍模数的应用有助于评估地下水位的变化和水文地质条件对地下水排泄的影响。通过合理确定排渍模数,可以保持地下水位的稳定,防止土壤盐碱化和水文灾害的发生。